metabelian, soluble, monomial, A-group
Aliases: C32⋊F5, C5⋊(C32⋊C4), (C3×C15)⋊1C4, C3⋊D15.C2, SmallGroup(180,25)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C3×C15 — C3⋊D15 — C32⋊F5 |
C3×C15 — C32⋊F5 |
Generators and relations for C32⋊F5
G = < a,b,c,d | a3=b3=c5=d4=1, dbd-1=ab=ba, ac=ca, dad-1=a-1b, bc=cb, dcd-1=c3 >
Character table of C32⋊F5
class | 1 | 2 | 3A | 3B | 4A | 4B | 5 | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | |
size | 1 | 45 | 4 | 4 | 45 | 45 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ4 | 1 | -1 | 1 | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ5 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ6 | 4 | 0 | 1 | -2 | 0 | 0 | 4 | 1 | 1 | -2 | 1 | 1 | -2 | -2 | -2 | orthogonal lifted from C32⋊C4 |
ρ7 | 4 | 0 | -2 | 1 | 0 | 0 | 4 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | 1 | orthogonal lifted from C32⋊C4 |
ρ8 | 4 | 0 | -2 | 1 | 0 | 0 | -1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | orthogonal faithful |
ρ9 | 4 | 0 | -2 | 1 | 0 | 0 | -1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | orthogonal faithful |
ρ10 | 4 | 0 | 1 | -2 | 0 | 0 | -1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | orthogonal faithful |
ρ11 | 4 | 0 | -2 | 1 | 0 | 0 | -1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | orthogonal faithful |
ρ12 | 4 | 0 | 1 | -2 | 0 | 0 | -1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | orthogonal faithful |
ρ13 | 4 | 0 | -2 | 1 | 0 | 0 | -1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | orthogonal faithful |
ρ14 | 4 | 0 | 1 | -2 | 0 | 0 | -1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | orthogonal faithful |
ρ15 | 4 | 0 | 1 | -2 | 0 | 0 | -1 | -ζ32ζ54+ζ32ζ5-2ζ54-ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ32ζ54+2ζ32ζ52+ζ32+ζ54+ζ52+1 | -ζ3ζ54+ζ3ζ5-2ζ54-ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ54+2ζ3ζ53+ζ3+ζ54+ζ53+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | orthogonal faithful |
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 18)(2 20 5 16)(3 17 4 19)(6 28 11 23)(7 30 15 21)(8 27 14 24)(9 29 13 22)(10 26 12 25)
G:=sub<Sym(30)| (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,18)(2,20,5,16)(3,17,4,19)(6,28,11,23)(7,30,15,21)(8,27,14,24)(9,29,13,22)(10,26,12,25)>;
G:=Group( (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,18)(2,20,5,16)(3,17,4,19)(6,28,11,23)(7,30,15,21)(8,27,14,24)(9,29,13,22)(10,26,12,25) );
G=PermutationGroup([[(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,18),(2,20,5,16),(3,17,4,19),(6,28,11,23),(7,30,15,21),(8,27,14,24),(9,29,13,22),(10,26,12,25)]])
G:=TransitiveGroup(30,46);
C32⋊F5 is a maximal subgroup of
C32⋊F5⋊C2
C32⋊F5 is a maximal quotient of (C3×C6).F5
Matrix representation of C32⋊F5 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 8 | 45 |
0 | 0 | 16 | 52 |
52 | 16 | 0 | 0 |
45 | 8 | 0 | 0 |
0 | 0 | 8 | 45 |
0 | 0 | 16 | 52 |
43 | 60 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 18 | 18 |
0 | 0 | 43 | 60 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
43 | 60 | 0 | 0 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,8,16,0,0,45,52],[52,45,0,0,16,8,0,0,0,0,8,16,0,0,45,52],[43,1,0,0,60,0,0,0,0,0,18,43,0,0,18,60],[0,0,1,43,0,0,0,60,1,0,0,0,0,1,0,0] >;
C32⋊F5 in GAP, Magma, Sage, TeX
C_3^2\rtimes F_5
% in TeX
G:=Group("C3^2:F5");
// GroupNames label
G:=SmallGroup(180,25);
// by ID
G=gap.SmallGroup(180,25);
# by ID
G:=PCGroup([5,-2,-2,-3,3,-5,10,422,67,643,248,1804,1809]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^5=d^4=1,d*b*d^-1=a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b,b*c=c*b,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of C32⋊F5 in TeX
Character table of C32⋊F5 in TeX