Copied to
clipboard

G = C32⋊F5order 180 = 22·32·5

The semidirect product of C32 and F5 acting via F5/C5=C4

metabelian, soluble, monomial, A-group

Aliases: C32⋊F5, C5⋊(C32⋊C4), (C3×C15)⋊1C4, C3⋊D15.C2, SmallGroup(180,25)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C32⋊F5
C1C5C3×C15C3⋊D15 — C32⋊F5
C3×C15 — C32⋊F5
C1

Generators and relations for C32⋊F5
 G = < a,b,c,d | a3=b3=c5=d4=1, dbd-1=ab=ba, ac=ca, dad-1=a-1b, bc=cb, dcd-1=c3 >

45C2
2C3
2C3
45C4
30S3
30S3
9D5
2C15
2C15
5C3⋊S3
9F5
6D15
6D15
5C32⋊C4

Character table of C32⋊F5

 class 123A3B4A4B515A15B15C15D15E15F15G15H
 size 145444545444444444
ρ1111111111111111    trivial
ρ21111-1-1111111111    linear of order 2
ρ31-111-ii111111111    linear of order 4
ρ41-111i-i111111111    linear of order 4
ρ5404400-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ6401-200411-211-2-2-2    orthogonal lifted from C32⋊C4
ρ740-21004-2-21-2-2111    orthogonal lifted from C32⋊C4
ρ840-2100-13ζ54+2ζ3ζ5335453+13ζ54+2ζ3ζ5235452+132ζ5432ζ5-2ζ545-13ζ52+2ζ3ζ53525+132ζ54+2ζ32ζ52325452+13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-13ζ543ζ5-2ζ545-1    orthogonal faithful
ρ940-2100-13ζ52+2ζ3ζ53525+132ζ54+2ζ32ζ52325452+13ζ543ζ5-2ζ545-13ζ54+2ζ3ζ5335453+13ζ54+2ζ3ζ5235452+1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-132ζ5432ζ5-2ζ545-1    orthogonal faithful
ρ10401-200-1ζ3ζ533ζ5253-2ζ52-132ζ5432ζ5-2ζ545-13ζ52+2ζ3ζ53525+13ζ533ζ52-2ζ5352-13ζ543ζ5-2ζ545-132ζ54+2ζ32ζ52325452+13ζ54+2ζ3ζ5235452+13ζ54+2ζ3ζ5335453+1    orthogonal faithful
ρ1140-2100-13ζ54+2ζ3ζ5235452+13ζ52+2ζ3ζ53525+13ζ533ζ52-2ζ5352-132ζ54+2ζ32ζ52325452+13ζ54+2ζ3ζ5335453+13ζ543ζ5-2ζ545-132ζ5432ζ5-2ζ545-1ζ3ζ533ζ5253-2ζ52-1    orthogonal faithful
ρ12401-200-13ζ533ζ52-2ζ5352-13ζ543ζ5-2ζ545-13ζ54+2ζ3ζ5335453+1ζ3ζ533ζ5253-2ζ52-132ζ5432ζ5-2ζ545-13ζ54+2ζ3ζ5235452+132ζ54+2ζ32ζ52325452+13ζ52+2ζ3ζ53525+1    orthogonal faithful
ρ1340-2100-132ζ54+2ζ32ζ52325452+13ζ54+2ζ3ζ5335453+1ζ3ζ533ζ5253-2ζ52-13ζ54+2ζ3ζ5235452+13ζ52+2ζ3ζ53525+132ζ5432ζ5-2ζ545-13ζ543ζ5-2ζ545-13ζ533ζ52-2ζ5352-1    orthogonal faithful
ρ14401-200-13ζ543ζ5-2ζ545-1ζ3ζ533ζ5253-2ζ52-13ζ54+2ζ3ζ5235452+132ζ5432ζ5-2ζ545-13ζ533ζ52-2ζ5352-13ζ52+2ζ3ζ53525+13ζ54+2ζ3ζ5335453+132ζ54+2ζ32ζ52325452+1    orthogonal faithful
ρ15401-200-132ζ5432ζ5-2ζ545-13ζ533ζ52-2ζ5352-132ζ54+2ζ32ζ52325452+13ζ543ζ5-2ζ545-1ζ3ζ533ζ5253-2ζ52-13ζ54+2ζ3ζ5335453+13ζ52+2ζ3ζ53525+13ζ54+2ζ3ζ5235452+1    orthogonal faithful

Permutation representations of C32⋊F5
On 30 points - transitive group 30T46
Generators in S30
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 18)(2 20 5 16)(3 17 4 19)(6 28 11 23)(7 30 15 21)(8 27 14 24)(9 29 13 22)(10 26 12 25)

G:=sub<Sym(30)| (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,18)(2,20,5,16)(3,17,4,19)(6,28,11,23)(7,30,15,21)(8,27,14,24)(9,29,13,22)(10,26,12,25)>;

G:=Group( (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,18)(2,20,5,16)(3,17,4,19)(6,28,11,23)(7,30,15,21)(8,27,14,24)(9,29,13,22)(10,26,12,25) );

G=PermutationGroup([[(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,18),(2,20,5,16),(3,17,4,19),(6,28,11,23),(7,30,15,21),(8,27,14,24),(9,29,13,22),(10,26,12,25)]])

G:=TransitiveGroup(30,46);

C32⋊F5 is a maximal subgroup of   C32⋊F5⋊C2
C32⋊F5 is a maximal quotient of   (C3×C6).F5

Matrix representation of C32⋊F5 in GL4(𝔽61) generated by

1000
0100
00845
001652
,
521600
45800
00845
001652
,
436000
1000
001818
004360
,
0010
0001
1000
436000
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,8,16,0,0,45,52],[52,45,0,0,16,8,0,0,0,0,8,16,0,0,45,52],[43,1,0,0,60,0,0,0,0,0,18,43,0,0,18,60],[0,0,1,43,0,0,0,60,1,0,0,0,0,1,0,0] >;

C32⋊F5 in GAP, Magma, Sage, TeX

C_3^2\rtimes F_5
% in TeX

G:=Group("C3^2:F5");
// GroupNames label

G:=SmallGroup(180,25);
// by ID

G=gap.SmallGroup(180,25);
# by ID

G:=PCGroup([5,-2,-2,-3,3,-5,10,422,67,643,248,1804,1809]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^5=d^4=1,d*b*d^-1=a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b,b*c=c*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C32⋊F5 in TeX
Character table of C32⋊F5 in TeX

׿
×
𝔽